热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

交易额|成交额_实战SparkStream+Kafka+Redis实时计算商品销售额

篇首语:本文由编程笔记#小编为大家整理,主要介绍了实战SparkStream+Kafka+Redis实时计算商品销售额相关的知识,希望对你有一定的参考价值。

篇首语:本文由编程笔记#小编为大家整理,主要介绍了实战SparkStream+Kafka+Redis实时计算商品销售额相关的知识,希望对你有一定的参考价值。



写在前面

2016年天猫双十一当天,零点的倒计时话音未落,52秒交易额冲破10亿。随后,又迅速在0时6分28秒,达到100亿!每一秒开猫大屏上的交易额都在刷新,这种时实刷新的大屏看着感觉超爽。天猫这个大屏后面的技术应该是使用流计算,阿里使用Java将Storm重写了,叫JStrom(https://github.com/alibaba/jstorm),最近学习SparkStream和Kafka,可以简单模仿一下这个时实计算成交额的过程,主要目的是实际运用这些技术,也了解一下技术的运用场景,加深对技术的理解。


实时计算模型

下图所示为通用SparkStream时实计算模型,主要分为三部分


  1. 数据源
    我们这里的数据源选用了Kafka,关于Kafka的安装与使用说明可以参考这里https://kafkadoc.beanmr.com/

  2. SparkStream计算
    SparkStream是实时计算的核心,这们这里也是近时实计算,选择一个时间窗口,对时间窗口中的数据做离线计算。

  3. 数据落地
    SparkStream算好的结果可以存HDFS/mysql/Redis等等,我们这里对商品销售额计算过程有涉及累加,所以选择了Redis


业务模型介绍

我们模仿一个电商系统,每时每刻都有订单成交,每一笔成交的数据以一个事件发送到Kafka中,SparkStream每一分中从Kafka中读取一次数据,计算一分钟内每个商品的销售额,然而写入Redis,并在Redis中累加每分钟的数据,Redis中主要存三种结果数量,从开始到当前总销售额、从开始到当前每个商品销售额、上一分钟每个商品的销售额


Kafka生产者,模拟每时每刻订单交易

object OrderProducer
def main(args: Array[String]): Unit =
//Kafka参数设置
val topic = "order"
val brokers = "127.0.0.1:9092"
val props = new Properties()
props.put("metadata.broker.list", brokers)
props.put("serializer.class", "kafka.serializer.StringEncoder")
val kafkaConfig = new ProducerConfig(props)
//创建生产者
val producer = new Producer[String, String](kafkaConfig)
while (true)
//随机生成10以内ID
val id = Random.nextInt(10)
//创建订单成交事件
val event = new JSONObject();
//商品ID
event.put("id", id)
//商品成交价格
event.put("price", Random.nextInt(10000))
//发送信息
producer.send(new KeyedMessage[String, String](topic, event.toString))
println("Message sent: " + event)
//随机暂停一段时间
Thread.sleep(Random.nextInt(100))


生产者输出结果:

Message sent: "price":3959,"id":6
Message sent: "price":1579,"id":0
Message sent: "price":857,"id":6
Message sent: "price":8440,"id":1
Message sent: "price":6873,"id":6
Message sent: "price":6202,"id":2
Message sent: "price":8403,"id":6
Message sent: "price":7866,"id":2
Message sent: "price":9441,"id":5
Message sent: "price":6880,"id":4
Message sent: "price":4572,"id":5
Message sent: "price":509,"id":3
Message sent: "price":7526,"id":0

上述代码主要模拟一家店铺有十件商品,ID从0到9,每隔一小段随机时间成交一单,成交价格以分为单位,每成交一笔就像Kafka中发送一个消息,用这个生产者模拟线上的真实交易,在实际生产中成交数据可以从日志中获取。


Kafka消费者,SparkStream时实计算


object OrderConsumer
//Redis配置
val dbIndex = 0
//每件商品总销售额
val orderTotalKey = "app::order::total"
//每件商品上一分钟销售额
val oneMinTotalKey = "app::order::product"
//总销售额
val totalKey = "app::order::all"
def main(args: Array[String]): Unit =
// 创建 StreamingContext 时间片为1秒
val conf = new SparkConf().setMaster("local").setAppName("UserClickCountStat")
val ssc = new StreamingContext(conf, Seconds(1))
// Kafka 配置
val topics = Set("order")
val brokers = "127.0.0.1:9092"
val kafkaParams = Map[String, String](
"metadata.broker.list" -> brokers,
"serializer.class" -> "kafka.serializer.StringEncoder")
// 创建一个 direct stream
val kafkaStream = KafkaUtils.createDirectStream[String, String, StringDecoder, StringDecoder](ssc, kafkaParams, topics)
//解析JSON
val events = kafkaStream.flatMap(line => Some(JSON.parseObject(line._2)))
// 按ID分组统计个数与价格总合
val orders = events.map(x => (x.getString("id"), x.getLong("price"))).groupByKey().map(x => (x._1, x._2.size, x._2.reduceLeft(_ + _)))
//输出
orders.foreachRDD(x =>
x.foreachPartition(partition =>
partition.foreach(x =>
println("id=" + x._1 + " count=" + x._2 + " price=" + x._3)
//保存到Redis中
val jedis = RedisClient.pool.getResource
jedis.select(dbIndex)
//每个商品销售额累加
jedis.hincrBy(orderTotalKey, x._1, x._3)
//上一分钟第每个商品销售额
jedis.hset(oneMinTotalKey, x._1.toString, x._3.toString)
//总销售额累加
jedis.incrBy(totalKey, x._3)
RedisClient.pool.returnResource(jedis)
)
))
ssc.start()
ssc.awaitTermination()

消费者每分钟输出

id=4 count=3 price=7208
id=8 count=2 price=10152
id=7 count=1 price=6928
id=5 count=1 price=3327
id=6 count=3 price=20483
id=0 count=2 price=9882
id=2 count=2 price=9191
id=3 count=2 price=8211
id=1 count=3 price=9906

Redis客户端

object RedisClient extends Serializable
val redisHost = "127.0.0.1"
val redisPort = 6379
val redisTimeout = 30000
lazy val pool = new JedisPool(new GenericObjectPoolConfig(), redisHost, redisPort, redisTimeout)
lazy val hook = new Thread
override def run =
println("Execute hook thread: " + this)
pool.destroy()


sys.addShutdownHook(hook.run)
def main(args: Array[String]): Unit =
val dbIndex = 0
val jedis = RedisClient.pool.getResource
jedis.select(dbIndex)
jedis.set("test", "1")
println(jedis.get("test"))
RedisClient.pool.returnResource(jedis)


Redis结果

上一分钟商品销售额,有了这个数据就可以做成动态的图表展示时实交易额了

每件商品总销售额

总销售额,这就是天猫大屏上的1111亿了


完整代码地址

http://git.oschina.net/whzhaochao/spark-learning/tree/master/spark/src/main/scala/com/spark/stream/order

原文地址:http://blog.csdn.net/whzhaochao/article/details/77717660


推荐阅读
  • Hadoop的文件操作位于包org.apache.hadoop.fs里面,能够进行新建、删除、修改等操作。比较重要的几个类:(1)Configurati ... [详细]
  • 本文将带你快速了解 SpringMVC 框架的基本使用方法,通过实现一个简单的 Controller 并在浏览器中访问,展示 SpringMVC 的强大与简便。 ... [详细]
  • DAO(Data Access Object)模式是一种用于抽象和封装所有对数据库或其他持久化机制访问的方法,它通过提供一个统一的接口来隐藏底层数据访问的复杂性。 ... [详细]
  • 本文介绍了在 Java 编程中遇到的一个常见错误:对象无法转换为 long 类型,并提供了详细的解决方案。 ... [详细]
  • 零拷贝技术是提高I/O性能的重要手段,常用于Java NIO、Netty、Kafka等框架中。本文将详细解析零拷贝技术的原理及其应用。 ... [详细]
  • 原文网址:https:www.cnblogs.comysoceanp7476379.html目录1、AOP什么?2、需求3、解决办法1:使用静态代理4 ... [详细]
  • 如何在Java中使用DButils类
    这期内容当中小编将会给大家带来有关如何在Java中使用DButils类,文章内容丰富且以专业的角度为大家分析和叙述,阅读完这篇文章希望大家可以有所收获。D ... [详细]
  • 在 iOS 开发中,内存管理是一个至关重要的环节。初学者常常因为内存管理不当导致程序崩溃。本文将详细介绍 iOS 中内存的分配与释放机制,并提供一些实用的技巧。 ... [详细]
  • 属性类 `Properties` 是 `Hashtable` 类的子类,用于存储键值对形式的数据。该类在 Java 中广泛应用于配置文件的读取与写入,支持字符串类型的键和值。通过 `Properties` 类,开发者可以方便地进行配置信息的管理,确保应用程序的灵活性和可维护性。此外,`Properties` 类还提供了加载和保存属性文件的方法,使其在实际开发中具有较高的实用价值。 ... [详细]
  • 本文详细介绍了Java反射机制的基本概念、获取Class对象的方法、反射的主要功能及其在实际开发中的应用。通过具体示例,帮助读者更好地理解和使用Java反射。 ... [详细]
  • JUC(三):深入解析AQS
    本文详细介绍了Java并发工具包中的核心类AQS(AbstractQueuedSynchronizer),包括其基本概念、数据结构、源码分析及核心方法的实现。 ... [详细]
  • 本文探讨了如何在 Java 中将多参数方法通过 Lambda 表达式传递给一个接受 List 的 Function。具体分析了 `OrderUtil` 类中的 `runInBatches` 方法及其使用场景。 ... [详细]
  • oracle c3p0 dword 60,web_day10 dbcp c3p0 dbutils
    createdatabasemydbcharactersetutf8;alertdatabasemydbcharactersetutf8;1.自定义连接池为了不去经常创建连接和释放 ... [详细]
  • 从0到1搭建大数据平台
    从0到1搭建大数据平台 ... [详细]
  • 秒建一个后台管理系统?用这5个开源免费的Java项目就够了
    秒建一个后台管理系统?用这5个开源免费的Java项目就够了 ... [详细]
author-avatar
ythg
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有